产品目录 | Product catalog

技术文章 | Technical articles

三相相位矢量分析仪快速高精度的测试能力
点击次数:242 更新时间:2023-12-26 打印本页面 返回

特高压可控并联电抗器是特高压输电技术的重要组成部分,也是特高压工程长期可靠运行的重要保障之一。国内超/特高压可控并联电抗器技术研究始于2005年。依托国家电网公司多个科技项目,500千伏、750千伏、1000千伏可控并联电抗器先后诞生。

特高压可控并联电抗器的研发面临的挑战来自4个方面。首先是系统成套设计关键技术,研发人员不但要解决容量快速调节、暂态控制方式等技术难题,还需掌握高阻抗变压器、晶闸管阀组、旁路开关、辅助电抗器、取能电抗器等核心设备的设计及绝缘配合关键技术;其次是建立精确的仿真模型,以准确模拟装置在各个工况下的全部工作过程,为精确设计主设备参数提供依据;再次需攻克特高压输电系统的电压无功平衡控制难题,实现稳定电压、平衡无功等功能;最后是核心设备生产制造的关键技术及试验方法。

一、功能特点(LYXW9000三相相位矢量分析仪快速高精度的测试能力

三路电压、三路电流矢量同屏显示,对于复杂差动保护装置可采用双钳法进行多次测量*终绘制出完整的六角图。

采用钳形电流互感器接线,不用断开电流回路,安全方便。

可进行复杂保护装置的矢量分析,判断接线是否正确,并给出正确的接线图以供对比。

可进行常规电参量测试,同时显示三相电压、三相电流、三相有功功率、三相视在功率、三相相位角;并可直读折算到互感器一次侧的电压幅值、电流的幅值、功率的数值。

可进行三相三线高压计量装置错误接线检查,能对三相三线48种接线进行分析判断,直接给出分析结果;查处恶意改变计量接线的窃电手段,有效避免电费流失。

可进行现场被测信号的谐波分析,能分析出250次谐波的各次含量,自动计算出总谐波失真度。

LYXW9000三相相位矢量分析仪快速高精度的测试能力大屏幕、高亮度的彩色液晶显示,全汉字图形化菜单及操作提示实现友好的人机对话,硅胶触摸按键使操作更舒适、手感更佳,液晶宽温、带亮度调节,适应冬夏各季环境应用。

大容量锂电池供电,连续工作长达8小时。

用户可随时将测试的数据以记录的形式保存下来,以供集中统一管理、备案、查阅,可存储2000组以上的数据。

可将保存的记录上传到后台管理计算机,进行综合分析,评审。

具备万年历、时钟功能,实时显示测试工作进行的日期及时间。

体积小、重量轻,便于现场使用。

预留USB接口,可用仪器来替代优盘等移动存储设备。

二、技术指标(LYXW9000三相相位矢量分析仪快速高精度的测试能力

输入特性

电压通道数量:3通道

电压测量范围:0~450V

电压显示位数:6

电流通道数量:3通道

电流测量范围:0~10A

电流显示位数:6

相位测量范围:-180°~+180°

谐波分析次数:250

准确度

电压:±0.2%

电流、功率:±0.5%

相角:±2°

谐波电压含有率测量偏差:≤0.3

谐波电流含有率测量偏差:≤0.5

工作温度:-1540

充电电源:交流160V~260V

绝缘:⑴、电压、电流输入端对机壳的绝缘电阻≥100M?

 ⑵、工作电源输入端对外壳之间承受工频2KV(有效值),历时1分钟实验。

体积:250mm×160mm×60mm

重量:1.8Kg

1、同时测量三相电压或四路电流(包含零线电流)

2、同时测量三相交流电压相角、电流相角、功角;

3、测量电网频率和相序;

4、自动判别变压器绕组、容性和感性负载;

5、六角图显示,彩色相序分析;

6、有功功率、无功功率、视在功功率、三相功率和和功率因数测量;

7、数据保存和查看功能;

8 数据静态保存功能;

93.5TFT彩屏显示具有触摸功能;

10 锂电池供电、一次充满可连续待机大于20小时;

LYXW9000三相相位伏安表(拼合LYSW3).jpg

我国研发人员采用了从低电压等级到高电压等级,从理论研究、工程样机到实际工程循序渐进推进的攻关历程。2006年、2012年,500千伏忻州可控并联电抗器、750千伏敦煌可控并联电抗器先后投运。这些可控并联电抗器均为世界首套,投运以来,在抑制电压波动、系统暂态时动态电压支撑等方面发挥了关键作用,有效保障了输电通道的经济、可靠运行,并为后续特高压可控并联电抗器的工程应用提供了有益借鉴。

1000千伏特高压可控并联电抗器的技术攻坚始于2007年。研发人员开展了1000千伏可控并联电抗器技术方案制订、关键技术研究、设备样机研制等系列科研攻关,在理论基础、仿真分析、设备研发及试验、核心制造工艺、核心控制算法等多个方面深入研究,全面掌握了特高压可控并联电抗器的核心技术。

 

上海来扬电气转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

点击这里给我发消息
点击这里给我发消息
点击这里给我发消息
点击这里给我发消息